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Abstract

The Mandelbrot set is arguably one of the most beautiful sets in mathematics. In
1991, Dave Boll discovered a surprising occurrence of the number π while exploring a
seemingly unrelated property of the Mandelbrot set. Boll�s Þnding is easy to describe
and understand, and yet it is not widely known � possibly because the result has not
been rigorously shown. The purpose of this paper is to present and prove Boll�s result.

1 Introduction

The Mandelbrot setM for

Qc(z) = z
2 + c (1)

(displayed in Þgure 1) is often deÞned to be the set of c-values for which the orbit of zero,
{Qnc (0)}|∞n=1, is bounded. It is easy to show (see appendix 1) that if |z| ≥ |c| and |z| > 2

Figure 1: The Mandelbrot set (shown in black) for Qc(z) = z2 + c lies in the c�plane inside the
disk c ≤ 2. The Nth shaded band outsideM shows the c− values for which the Þrst N iterations
of the orbit, {Qnc (0)}|Nn=1, escapes c ≤ 2. The left side of the circle c = 2 is the outermost curve
through the left middle of the image.

that the orbit {Qnc (z)}|∞n=1 diverges. From this, we know that M is contained inside the disk
|c| ≤ 2. So, we can reÞne our deÞnition ofM as follows:

M = {c ∈ C : |Qnc (0)| ≤ 2 for all n = 1, 2, 3, . . . }. (2)

The bands of shades or colors normally displayed outside M represent the smallest number of
iterations N such that {|Qnc (0)|}|Nn=1 exceeds 2. In what follows, we tell the story of an observation
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that weds the number π to the banded region outside the Mandelbrot set in a simple and yet
remarkably beautiful way.

Our story began in 1991 when Dave Boll was a computer science graduate student at Colorado
State University. Boll had many curiousities, among which was his fascination with computer
generated fractals. Boll was trying to convince himself that only the single point c = (−0.75, 0)
connects the cardioid and the disk to its left. He could not have been prepared for what he was
to discover. Boll described his Þnding at his web site [4] which we mostly follow here:

�I was trying to verify that the neck of the set (which is at (−.75, 0)) in the complex
plane) is inÞnitely thin (it is). Accordingly, I was seeing how many iteration points of
the form (−.75, ε) went through before escaping, with ε being a small number. Here�s
a table showing the number of iterations for various values of ε:

ε # of iterations
1.0 3
0.1 33
0.01 315
0.001 3143
0.0001 31417
0.00001 314160
0.000001 3141593
0.0000001 31415928

Does the product of ε and the number of iterations strike you as a suspicious number?
It�s pi, to with +- ε. What the heck!

Let�s try it again, this time at the butt of the set. The butt of the set occurs at (0.25, 0),
and here�s a table for points of the form (.25 + ε, 0)

ε # of iterations
1.0 2
0.1 8
0.01 30
0.001 97
0.0001 312
0.00001 991
0.000001 3140
0.0000001 9933
0.00000001 31414
0.000000001 99344
0.0000000001 314157

Again we get the same type of relationship, this time the # of iterations * sqrt(ε) gives
pi.�

Boll�s discovery has since been popularized mostly thanks to its publication in Chaos and
Fractals: New Frontiers of Science[13] and also thanks to Gerald Edgar[9] at Ohio State University.
However, as pointed out by Edgar, although the �π � result� for the sequence along the real axis
was known at least as early as 1980 (see [15] and [11]), only hueristic arguments had been provided
for the observation. We now provide a proof for the �π � result� into the cusp ofM.
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Figure 2: The two routes to π discovered by Boll. The cusp route is c = (0.25 + ε, 0) and the
vertical route is c = (−0.75, ε). Although not shown, c = (−0.75,−ε) will work as well due to the
symmetry ofM.

Figure 3: Along the route c = (0.25 + ε, 0) into the cusp of M, the orbit {Qnc (0)} is real and is
depicted by a web diagram. If ε = 0, the graph of y = Qc(x) and y = x touch at the Þxed point
x = 1/2. If ε > 0 but small, there is no Þxed point, but most iterations are close to x = 1/2.

2 Main Theorem

The π-Theorem: Choose ε > 0 and let N(ε) be the number of iterations required for the orbit of
zero, under the map Q1/4+ε(x) = x

2 + 1/4 + ε, to exceed 2, i.e.

N(ε) = min
n
Qn1/4+ε(0) > 2. (3)

Then

lim
ε→0+

√
εN(ε) = π. (4)

Figure 3 shows that the majority of steps in the orbit of 0 are spent close to 1/2 and that the
step-size goes to zero there as ε → 0+. This gives us reason to believe that the solution of the
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difference equation

xk+1 = x
2
k +

1

4
+ ε, x0 = 0 (5)

or equivalently

xk+1 − xk =
µ
xk − 1

2

¶2

+ ε, x0 = 0 (6)

may be well approximated by the differential equation

dx

dt
= (x− 1/2)2 + ε, x(0) = 0 (7)

for ε small and x near 1/2. Sure enough, as claimed by the following Lemma, the differential
equation for x near x = 1/2 yields the �π result� analogous to equation (4).

Lemma 1: If ε > 0, the time T (ε) that it takes for the state variable x(t) satisfying (7) to
evolve to x(T (ε)) = 2 satisÞes

lim
ε→0+

√
εT (ε) = π. (8)

Proof : If we replace the initial condition in (7) with x(0) = 1/2, then

x(t) =
1

2
+
√
ε tan

√
εt. (9)

To prove the Lemma, we need to show that

x(T−(ε)) = 0 and x(T+(ε)) = 2 (10)

respectively imply

lim
ε→0+

√
εT−(ε) = −π

2
and lim

ε→0+

√
εT+(ε) =

π

2
. (11)

The results in (11) follow immediately after writing (9) in its equivalent form

√
εt = arctan

x(t)− 1/2√
ε

(12)

and substituting the conditions (10) into (12).¥
Remark 1: The terminal state 2 in (10) could be replaced with any number greater than

1/2. We use 2 because it is the radius of the smallest circle centered at the origin containing the
Mandelbrot setM.

What remains is to show that the solution of the differential equation (7) really does approximate
the solution of the original difference equation (5). We begin by solving

xk+1 = x
2
k +

1

4
+ ε, x0 = 1/2. (13)

The Þrst four iterates give

x1 =
1

2
+ ε,

x2 =
1

2
+ 2ε+ ε2,

x3 =
1

2
+ 3ε+ 5ε2 + 4ε3 + ε4,

x4 =
1

2
+ 4ε+ 14ε2 + 34ε3 + 50ε4 + · · · ,
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and we recognize a pattern on the lowest order terms in order to conjecture that

xn =
1

2
+ nε+

Ã
n−1X
i=0

i2

!
ε2 + · · ·

=
1

2
+ nε+

µ
1

3
n3 − 1

2
n2 +

1

6
n

¶
ε2 + · · · .

It is natural to Taylor expand the solution of the differential equation (given in equation (9))

x(n) =
1

2
+
√
ε tan

¡√
εn

¢
=

1

2
+ nε+

1

3
n3ε2 +

2

15
n5ε3 + · · · . (14)

in order to make comparisons with the solution of the difference equation. Since we seek to choose
the largest integer n we can, we let n = K/

√
ε (with K less than but as close to π/2 as possible so

that n is an integer) to get

x(n) = x(K/
√
ε) =

1

2
+
√
ε

µ
K +

1

3
K3 +

2

15
K5 + · · ·

¶
(15)

which should be compared with the solution of the difference equation

xn =
1

2
+
K√
ε
ε+

Ã
1

3

µ
K√
ε

¶3

− 1
2

µ
K√
ε

¶2

+
1

6

µ
K√
ε

¶!
ε2 + · · ·

=
1

2
+
√
ε

µ
K +

1

3
K3 +

2

15
K5 + · · ·

¶
+O(ε). (16)

Remark 2: We have chosen n so that n
√
ε ≈ π/2 for ε small and so that limε→0+ n

√
ε = π/2.

Remark 3: The expression
¡
K + 1

3K
3 + 2

15K
5 + · · · ¢ from x(n) in (15) is the tangent series.

However, the same looking expression from xn in (16) is a partial sum of 2n−1 terms that we aim
to show are the Þrst 2n−1 non-zero terms of the tangent series.

Taylor�s theorem says that

tanK = K +
K3

3
+
2K5

15
+ · · ·+ a2n−1K2n−1 +

tan(2n) κ

(2n)!
K2n

for 0 ≤ κ ≤ K where tan(j) x denotes the jth derivative of tanx and aj denotes the jth non-zero
term in the tangent series. So, once we can show that (16) contains a partial sum for tanK,
equation (16) becomes

xn =
1

2
+
√
ε

Ã
tanK − tan

(2n−1+1) κ

(2n−1 + 1)!
K2n

!
+O(ε).

Setting xn = xK/
√
ε = 2 in (16) implies

2− 1/2√
ε

= tanK − tan
(2n) κ

(2n)!
K2n

+O(
√
ε) (17)
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which should be contrasted with setting the solution of the differential equation x(n) = x(K/
√
ε) =

2 in (15) to get

2− 1/2√
ε

= tanK. (18)

Since the tangent series converges, we know that given any �ε > 0, there is a sufficiently large value
of n for which the magnitude of the remainder term is less than �ε. Equivalently, there must be a
positive exponent a so that the error term is less than �ε = εa so that (17) gives

3

2
√
ε
= tanK −O(εa) +O(√ε), a > 0

which leads to

lim
ε→0+

n
√
ε = lim

ε→0+
tan−1

µ
3

2
√
ε
+O(εa)−O(√ε)

¶
=
π

2
.

So, our goal is to show that the sum in (19) is really the partial sum for the tangent series. We�ll
also need to show a similar result for n negative. We begin with a lemma that describes the form
of the solution xn of the difference equation.

Lemma 2: The solution xn of the difference equation (13) is

xn =
2n−1X
j=0

pj(n)ε
j, n = 1, 2, 3, . . . (19)

where p0(n) = 1/2 and pj(n) is a 2j − 1 degree polynomial in n (for j = 1, 2, 3, . . . ) that satisÞes
the recurrence relation

pj(n+ 1) = pj(n) +

j−1X
i=1

pi(n)pj−i(n), p1(n) = n, j = 2, 3, 4, . . . (20)

Proof : Since x1 = 1/2 + ε, we have p0(1) = 1/2 and p1(1) = 1 so (19) holds for n = 1. Now
assume (19) is true for n = m. Then

xm+1 =
³
p0(m) + p1(m)ε+ p2(m)ε

2 + p3(m)ε
3 + · · ·+ p2m−1(m)ε2m−1

´2
+
1

4
+ ε (21)

=

·
p2

0(m) +
1

4

¸
+ [2p0(m)p1(m) + 1] ε+ · · ·+

"
jX
i=0

pi(m)pj−i(m)

#
εj + · · · , (22)

for j = 2, . . . , 2m. We have now shown that (19) is true for all n = 1, 2, 3 . . . . We now must prove
the properties of the pj�s hold. Since our induction hypothesis includes p0(m) = 1/2, (21) implies
that p0(m+ 1) = (1/2)

2 + 1/4 = 1/2 proving that p0(n) = 1/2 for all n = 1, 2, 3 . . . . Similarly, we
assumed that p1(m) = m, so (21) implies that p1(m+ 1) = 2 · 1

2 ·m+ 1 proving that p1(n) = n for
all n = 1, 2, 3 . . . . Since p0(n) = 1/2 for all n, the coefficient of ε

j in xn+1 = x
2
n +

1
4 + ε gives the

recurrence relation

pj(m+ 1) = pj(m) +

j−1X
i=1

pi(m)pj−i(m) (23)
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directly. Finally, (23) is equivalent to

pj(m+ 1) =
mX
k=1

j−1X
i=1

pi(k)pj−i(k) (24)

since pj(1), the coefficient of ε
j in x1, is zero. Since pi(m) and pj−i(m) are 2i − 1 and 2(j −

i) − 1 degree polynomials respectively, pi(m)pj−i(m) is a 2j − 2 degree polynomial and so isPj−1
i=1 pi(k)pj−i(k). It follows then that the right-hand-side of equation (24) is a 2j − 1 degree

polynomial.¥
We saw in equation (16) that the lower order terms in the polynomial coefficients pj(n) con-

tribute to O(ε) terms which ultimately have no effect on the result. What we need is the coefficient
aj of the highest degree term in pj(n).

Lemma 3: DeÞne aj to be the coefficient of the highest degree term in pj(n). Then aj satisÞes
the recurrence relation

aj =
1

2j − 1
j−1X
i=1

aiaj−i, a1 = 1. (25)

Proof : By deÞnition, pj(n) = ajn
2j−1 + cjn2j−2 + · · · where cj is the constant coefficient of

n2j−2. From the recurrence relation (23) for pj(n), we have

¡
ajn

2j−1 + cjn
2j−2 + · · · ¢+ j−1X

i=1

¡
ain

2i−1 + cin
2i−2 + · · · ¢ ³

aj−in2(j−i)−1 + cj−in2(j−i)−2 + · · ·
´

= aj(n+ 1)
2j−1 + cj(n+ 1)

2j−2 + · · ·

= ajn
2j−1 + (2j − 1)ajn2j−2 + cjn

2j−2 + · · · .
Equating coefficients of n2j−2 gives

aj =
1

2j − 1
j−1X
i=1

aiaj−i

and a1 = 1 since b1(n) = 1 · n.¥
Next, we show that the aj �s are coefficients for the tangent series.
Lemma 4: The non-zero coefficients of the tangent series are also generated by (25).
Proof : We can write

tanx =
∞X
k=1

ckx
k, −π/2 < x < π/2

since tanx is analytic on −π/2 < x < π/2. Futhermore, since tanx is odd, ck = 0 for even k. We
can differentiate the convergent power series and we have

d

dx
tanx = sec2 x = 1+ tan2 x

so that

∞X
k=1

kckx
k−1 = 1+

Ã ∞X
k=1

ckx
k

! Ã ∞X
k=1

ckx
k

!
. (26)
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Equating coefficients of xn for n = 2j = 2, 4, 6, . . . in (26) gives

(2j + 1)c2j+1 =
X

m+l=2j
m,l odd

cmcl. (27)

If we then substitute ai = c2i−1, (27) becomes

(2j + 1)aj+1 =

jX
i=1

aiaj+1−i

which completes the proof after replacing j with j − 1.¥
Having just shown that the leading coefficients in pj(n) match the jth non-zero term in the

tangent series, we have completed the proof that it is valid to replace the difference equation wth the
differential equation for 1/2 ≤ xn, x(n) ≤ 2, n ≥ 0. We next tackle the case of 0 ≤ xn, x(n) ≤ 1/2,
n ≤ 0. Since we are restricted to x ≥ 0, the map f(x) = x2 + 1/4 + ε has the inverse

f−1(x) =
p
x− 1/4− ε.

So, x−n = yn for n ≥ 0 if
yn+1 =

p
yn − 1/4− ε, y0 = 1/2. (28)

The Þrst few iterations are (expanded in ε)

y1 =
p
1/4− ε = 1/2− ε− ε2 − 2ε3 − · · ·

y2 =
p
1/4− 2ε− · · · = 1/2− 2ε− 5ε2 − 22ε3 − · · ·

y3 =
p
1/4− 3ε− · · · = 1/2− 3ε− 14ε2 − 106ε3 − · · ·

y4 =
p
1/4− 4ε− · · · = 1/2− 4ε− 30ε2 − 346ε3 − · · ·

Conveniently, we see patterns similar to those found in the case where x ≥ 1/2. We conjecture
and prove the following.

Lemma 5: The backwards solution of the difference equation xn+1 = x2
n + 1/4 + ε, x0 =

1/2, k = 0,−1,−2, ... (with 0 ≤ xk < 1/2) or equivalently the forward solution of yn+1 =p
yn − 1/4− ε, y0 = 1/2 by substituting x−n = yn is

yn =
∞X
j=0

qj(n)ε
j (29)

where q0(n) = 1/2 and qj(n) is a 2j − 1 degree polynomial in n (for j = 1, 2, 3, . . . ) that satisÞes
the recurrence relation

qj(n+ 1) = qj(n)−
j−1X
i=1

qi(n)qj−i(n) +O(n2j−3), q1(n) = −n, j = 2, 3, 4, . . . (30)

where O(n2j−3) denotes a polynomial of degree at most 2j − 3. The careful reader has already
noticed the similarities with Lemma 2.

Proof : We will Þnd it more convenient to work with the difference equation

zn+1 =
√
zn − ε− 1/4, z0 = 1/4 (31)
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which is equivalent to (28) via yk = zk + 1/4 so that (29) becomes

zn = q0(n)− 1
4
+

∞X
j=1

qj(n)ε
j . (32)

We Þrst note that q0(n) = 1/2 and q1(n) = −n follow trivially by mathematical induction upon
substituting equation (32) into (31) and equating coefficients of ε0 and ε1 to get

q0(n+ 1) =

r
q0(n)− 1

4
, q0(1) =

1

2

and

q1(n+ 1) = q1(n)− 1, q0(1) = −1
respectively.

Next, we seek a recurrence relation for qj(n). In order to do this, we must know what the Þrst
j + 1 terms are in the Taylor series expansion for f(ε) =

p
z(ε)− ε − 1/4. We denote the jth

derivative of f or z by f (j) or z(j) respectively.

Claim: For each j = 2, 3, 4, . . . , the jth derivative of f(ε) is

f (j)(ε) =
−1
4
(z − ε)−3/2

"
1

2

j−1X
i=1

µ
j

i

¶
z(i)z(j−i)

#
+
1

2
(z − ε)−1/2z(j) + · · · (33)

where the terms denoted by �· · · � are of the form

α
Y
k

h
z(dk)

ipk

(34)

where X
k

dkpk = j and
X
k

pk ≥ 3 or (35)X
k

dkpk < j (36)

and α = γ(z − ε)−r/2 for some constant γ and odd natural number r.
Remark: If we deÞne

P0
i=1 x(i) = 0, then the Claim holds for j = 1 as well.

Proof of Claim: We Þrst note that the terms of f (j)(ε) displayed in (33) do not satisfy
conditions (35) or (36). The ith component of the Þrst j − 1 terms in (33) can be written

−1
8

µ
j

i

¶
(z − ε)−3/2z(i)z(j−i) = α

2Y
k=1

h
z(dk)

ipk

with α = −1
8

¡
j
i

¢
(z − ε)−3/2, d1 = i, d2 = j − i, and p1 = p2 = 1. So,

P2
k=1 pk = 2 < 3 andP2

k=1 dkpk = j so that neither (35) nor (36) hold. The last term displayed in (33) term can be
written

1

2
(z − ε)−1/2z(j) = α

h
z(d1)

ip1
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with d1 = j and p1 = 1 so that
P1
k=1 pk = 1 < 3 and

P1
k=1 dkpk = j.

We next show that f (2)(ε) satisÞes the claim. Differentiating f gives

f (1)(ε) =
1

2
(z − ε)−1/2(z(1) − 1)

and

f (2)(ε) =
−1
4
(z − ε)−3/2(z(1) − 1)2 + 1

2
(z − ε)−1/2z(2)

=
−1
4
(z − ε)−3/2

h
z(1)

i2
+
1

2
(z − ε)−1/2z(2) +

1

2
(z − ε)−3/2z(1) − 1

4
(z − ε)−3/2. (37)

Taking j = 2 in the Þrst displayed part of (33) gives the Þrst term in (37) and taking j = 2 in the
second displayed part of (33) gives the second term in (37). The last two terms in (37) are of the
form (34) and both clearly satisfy condition (36).

We now proceed to assume the claim is true up to j and prove that it follows then for j + 1.
We differentiate (33) to get

f (j+1)(ε) =
3

8
(z − ε)−5/2(z(1) − 1)

"
1

2

j−1X
i=1

µ
j

i

¶
z(i)z(j−i)

#

−1
4
(z − ε)−3/2

"
1

2

j−1X
i=1

µ
j

i

¶ h
z(i+1)z(j−i) + z(i)z(j+1−i)

i#
−1
4
(z − ε)−3/2z(1)z(j)

+
1

4
(z − ε)−3/2z(j)

+
1

2
(z − ε)−1/2z(j+1) + · · · .

Before going further, we note that the Þrst term can be written as

3

8
(z − ε)−5/2(z(1) − 1)

"
1

2

j−1X
i=1

µ
j

i

¶
z(i)z(j−i)

#
=

j−1X
i=1

αi

3Y
k=1

h
z(dk)

ipk −
j−1X
i=1

αi

2Y
k=1

h
z(dk)

ipk

where αi =
3
16(z − ε)−5/2

¡j
i

¢
, d1 = i, d2 = j − i, d3 = 1, pk = 1 for k = 1, 2, 3 so that

P3
k=1 dkpk =

j + 1 and
P2
k=1 pk = 3 (Þrst part)

P2
k=1 dkpk = j < j + 1 (second part). Also, the fourth term

Þts the form

1

4
(z − ε)−3/2z(j) = α

h
z(d1)

ip1

so that
P1
k=1 dkpk = j < j + 1. All that is left is

f (j+1)(ε) = −1
4
(z − ε)−3/2

"
1

2

j−1X
i=1

µ
j

i

¶ h
z(i+1)z(j−i) + z(i)z(j+1−i)

i#
−

1

4
(z − ε)−3/2z(1)z(j) +

1

2
(z − ε)−1/2z(j+1) + · · · .
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We need, then, to show that

1

2

jX
i=1

µ
j + 1

i

¶
z(i)z(j+1−i) =

1

2

j−1X
i=1

µ
j

i

¶ h
z(i+1)z(j−i) + z(i)z(j+1−i)

i
+ z(1)z(j).

But

1

2

j−1X
i=1

µ
j

i

¶ h
z(i+1)z(j−i) + z(i)z(j+1−i)

i
+ z(1)z(j)

=
1

2

(
jX
i=2

µ
j

i− 1
¶
z(i)z(j+1−i) +

j−1X
i=1

µ
j

i

¶
z(i)z(j+1−i)

)
+ z(1)z(j)

=
1

2

(µ
j

1

¶
z(1)z(j) +

j−1X
i=2

·µ
j

i− 1
¶
+

µ
j

i

¶¸
z(i)z(j+1−i) +

µ
j

j − 1
¶
z(j)z(1)

)
+ z(1)z(j)

= (j + 1)z(1)z(j) +
1

2

j−1X
i=2

µ
j + 1

i

¶
z(i)z(j+1−i)

=
1

2

jX
i=1

µ
j + 1

i

¶
z(i)z(j+1−i).

We now must show that the derivative of terms originally of the form (34) retain the form (34)
under differentiation. Let

g(ε) = α
mY
k=1

h
z(dk)

ipk

with properties for (34) satisÞed along with conditions (35) and (36). Then

d

dε
g(ε) =

dα

dε
(z(1) − 1)

mY
k=1

h
z(dk)

ipk

+ α
mX
i=1

Y
i6=k

h
z(dk)

ipk

pi

h
z(di)

ipi−1
z(di+1)

= −dα
dε

mY
k=1

h
z(dk)

ipk

| {z }
g1

+
dα

dε

m+1Y
k=1

h
z(dk)

ipk

| {z }
g2

+ α
mX
i=1

Y
i6=k
pi

h
z(dk)

ipk
h
z(di)

ipi−1
z(di+1)

| {z }
g3

Clearly, piece g1 satisÞes whichever condition (35) or (36) that g did which immediately impliesPm
k=1 dkpk < j+1. Piece g2 has

Pm+1
k=1 dkpk =

Pm
k=1 dkpk+1. If

Pm
k=1 dkpk = j, then

Pm
k=1 pk ≥ 3

(since (35) must hold) and we have
Pm+1
k=1 dkpk = j + 1. If, on the other hand,

Pm
k=1 dkpk < j,

then
Pm+1
k=1 dkpk < j+ 1. The ith term in g3 has

P
k 6=i dkpk + di(pi− 1)+ di+ 1 =

Pm
k=1 dkpk + 1.

So, as for g2, g3 still satisÞes either condition (35) or (36) with j replaced by j+1. This completes
the proof of the Claim.

Recalling, now, that

z =
1

4
+ q1(n)ε+ q2(n)ε

2 + q3(n)ε
3 + · · · ,

we have

f (j)(0) =
−1
4

µ
1

4

¶−3
2

"
1

2

j−1X
i=1

µ
j

i

¶
i!qi(n)(j − i)!qj−i(n)

#
+
1

2

µ
1

4

¶−1
2

j!bj(n) + g
(j)(0)
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where

g(j)(0) =
X
i

αi
Y
k

h
z(dk)

ipk

¯̄̄̄
¯
ε=0

=
X
i

γi

µ
1

4

¶−r/2 Y
k

dk!q
pk
dk
(n).

It follows then that for j = 2, 3, . . .

qj(n+ 1) =
f (j)(0)

j!
= −

j−1X
i=1

qi(n)qj−i(n) + qj(n) +
X
i

2rγi
j!

Y
k

dk!q
pk
dk
(n)| {z }

remainder

(38)

where q1(n) = −n. Since sums and products of polynomials are polynomials, qj(n) is a polynomial.
We now show that qj(n) is a 2j − 1 degree polynomial for j = 1, 2, 3, . . . . Since it is true for

i = 1, we now assume true for i = 1, . . . , j − 1. Using the notation O(d) to denote a polynomial
of degree d, we have

qj(n+ 1)− qj(n) = O(2i− 1) ·O(2(j + 1)− 1) +O
ÃX

k

(2dk − 1)pk
!

= O(2j − 2) +O
Ã
2

X
k

dkpk −
X
k

pk

!
Conditions (35) and (36) imply that either

P
k dkpk = j and

P
k pk ≥ 3 or

P
k dkpk < j. Either

way, 2
P
k dkpk −

P
k pk ≤ 2j − 3. So, the remainder term in (38) is at most a 2j − 3 degree

polynomial and the difference qj(n+ 1)− qj(n) is a 2j − 2 degree polynomial:
qj(n+ 1)− qj(n) = β1n

2j−2 + β2n
2j−3 + · · ·

or equivalently,

qj(n+ 1) =
nX
k=1

¡
β1k

2j−2 + β2k
2j−3 + · · · ¢

which is a 2j − 1 degree polynomial. This completes the proof of Lemma 5.¥
Finally, we use the fact that qj(n) is a 2j − 1 degree polynomial along with the fact that the

remainder terms in (38) are at most a 2j−3 degree polynomial to rewrite qj(n)−
Pj−1
i=1 qi(n)qj−i(n)+

· · · = qj(n+ 1) in (38) as

¡
ajn

2j−1 + cjn
2j−2 + · · · ¢−j−1X

i=1

¡
ain

2i−1 + cin
2i−2 + · · · ¢ ³

aj−in2(j−i)−1 + cj−in2(j−i)−2 + · · ·
´
+ · · ·|{z}
O(2j−3)

= aj(n+ 1)
2j−1 + cj(n+ 1)

2j−2 + · · ·
= ajn

2j−1 + (2j − 1)ajn2j−2 + cjn
2j−2 + · · ·

Equating coefficients of n2j−2 gives

aj =
−1
2j − 1

j−1X
i=1

aiaj−i

and we already know that a1 = −1 since q1(n) = −1 · n. The proof of the �π � result� into the
cusp ofM now follows from the lemmas!
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Figure 4: The parabolic route c = (−1.25 − ε2, ε) into the point (−1.25, 0) avoids crossing the
decorations of M and produces another π � result. The symmetric route c = (−1.25 − ε2,−ε)
gives the same result.

3 Conclusion

Rather than attempt to complete the proof of Boll�s vertical route shown in Þgure 2, we do some-
thing much easier. We conjecture that there are inÞnitely many such routes at each of the inÞnitely
many pinches ofM. In fact, in 1997, Jay Hill found that the parabolic route c = (−1.25− ε2, ε)
into the pinch at (−1.25, 0) yields a �π � result�[9]. We provide a table of our own experiment for
this route in Þgure 4. We know of no other reported routes to date (except the obvious routes given
by the symmetry ofM.) Another open problem is to determine the function of ε that multiplies
N(ε). So far, we have

aεbN(ε)→ π (39)

where we�ve seen a = 1, 2 and b = 1, 1/2. In general, should we expect (39) to hold for some
rational values a and b? If so, what does the pinch location inM tell us about a and b?
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5 Appendix

Theorem (Escape Criterion): If |z| > 2 and |z| ≥ |c|, then Qc(z)→∞ as n→∞.
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Figure 5: If |z| > 2 and |z| ≥ |c|, then |Qc(z)| > |z|.

Picture Proof : Figure 5 gives the main idea of the proof: if |z| > 2, then |Qc(z)| > |z| > 2.
Taking Qc(z) to be our next z, the result follows.

Proof : Let |z0| > 2 and |z0| ≥ |c|. Then

|z1| def
= |Qc(z0)| = |z2

0 + c|
≥ |z0|2 − |c| (triangle inequality)

≥ |z0|2 − |z0| (|z0| ≥ |c|)
= |z0|(|z0|− 1)
= λ0|z0|.

where λ0 = |z0|− 1 > 1. This implies that |z1| > |z0| > 2, so continuing we have

|z2| def
= |Qc(z1)| ≥ λ1|z1| ≥ λ1λ0|z0| > λ2

0|z0|

where we have deÞned λn = |zn|− 1 so that clearly λn > λm for n > m. Mathematical induction
on n gives |zn| > λn0 |z0|. Taking n→∞ completes the proof.
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